Nuprl Lemma : divides_transitivity

a,b,c:ℤ.  ((a b)  (b c)  (a c))


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  divides: a all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q
Lemmas referenced :  int_subtype_base istype-int equal-wf-base decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  Error :productIsType,  Error :inhabitedIsType,  hypothesisEquality Error :equalityIsType4,  cut applyEquality introduction extract_by_obid hypothesis sqequalHypSubstitution multiplyEquality productElimination thin Error :dependent_pairFormation_alt,  equalitySymmetry hyp_replacement applyLambdaEquality isectElimination intEquality dependent_functionElimination because_Cache unionElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType

Latex:
\mforall{}a,b,c:\mBbbZ{}.    ((a  |  b)  {}\mRightarrow{}  (b  |  c)  {}\mRightarrow{}  (a  |  c))



Date html generated: 2019_06_20-PM-02_20_06
Last ObjectModification: 2018_10_03-AM-00_35_41

Theory : num_thy_1


Home Index