Nuprl Lemma : divides_transitivity
∀a,b,c:ℤ.  ((a | b) 
⇒ (b | c) 
⇒ (a | c))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
divides: b | a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
Lemmas referenced : 
int_subtype_base, 
istype-int, 
equal-wf-base, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
Error :productIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :equalityIsType4, 
cut, 
applyEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
multiplyEquality, 
productElimination, 
thin, 
Error :dependent_pairFormation_alt, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
isectElimination, 
intEquality, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType
Latex:
\mforall{}a,b,c:\mBbbZ{}.    ((a  |  b)  {}\mRightarrow{}  (b  |  c)  {}\mRightarrow{}  (a  |  c))
Date html generated:
2019_06_20-PM-02_20_06
Last ObjectModification:
2018_10_03-AM-00_35_41
Theory : num_thy_1
Home
Index