Nuprl Lemma : assert-bl-exists
∀[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (↑(∃x∈L.P[x])_b ⇐⇒ (∃x∈L. ↑P[x]))
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b, 
l_exists: (∃x∈L. P[x]), 
l_member: (x ∈ l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
implies: P ⇒ Q, 
bl-exists: (∃x∈L.P[x])_b, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
false: False, 
l_member: (x ∈ l), 
cand: A c∧ B, 
nat: ℕ, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
uiff: uiff(P;Q), 
guard: {T}, 
sq_type: SQType(T), 
btrue: tt, 
true: True
Lemmas referenced : 
list-subtype, 
bool_subtype_base, 
subtype_base_sq, 
assert_elim, 
bor_wf, 
assert_of_bor, 
equal_wf, 
or_wf, 
cons_wf, 
cons_member, 
nil_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
length_of_nil_lemma, 
false_wf, 
bool_wf, 
l_exists_wf, 
l_exists_iff, 
reduce_cons_lemma, 
reduce_nil_lemma, 
list_wf, 
and_wf, 
exists_wf, 
l_member_wf, 
bl-exists_wf, 
assert_wf, 
iff_wf, 
list_induction
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
functionEquality, 
universeEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
orFunctionality, 
existsFunctionality, 
andLevelFunctionality, 
existsLevelFunctionality, 
cumulativity, 
productEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
levelHypothesis, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  \muparrow{}P[x]))
Date html generated:
2016_05_14-PM-02_10_05
Last ObjectModification:
2016_01_15-AM-07_59_52
Theory : list_1
Home
Index