Nuprl Lemma : prime_elim

p:ℤ(prime(p)  ((¬(p 0 ∈ ℤ)) ∧ (p 1)) ∧ (∀a:ℤ((a p)  ((a 1) ∨ (a p))))))


Proof




Definitions occuring in Statement :  prime: prime(a) assoced: b divides: a all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a atomic: atomic(a) and: P ∧ Q not: ¬A false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_nzero: -o so_apply: x[s] or: P ∨ Q reducible: reducible(a) iff: ⇐⇒ Q rev_implies:  Q divides: a exists: x:A. B[x] decidable: Dec(P) squash: T true: True guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nequal: a ≠ b ∈ 
Lemmas referenced :  prime_imp_atomic equal-wf-base int_subtype_base assoced_wf divides_wf prime_wf not_wf exists_wf int_nzero_wf equal-wf-base-T all_wf or_wf decidable__not decidable__assoced iff_transitivity iff_weakening_uiff not_over_exists not_over_and dneg_elim_a decidable__equal_int equal_wf squash_wf true_wf iff_weakening_equal satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf nequal_wf assoced_weakening mul-commutes one-mul assoced_functionality_wrt_assoced multiply_functionality_wrt_assoced assoced_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis independent_pairFormation productElimination independent_functionElimination voidElimination intEquality applyEquality sqequalRule baseClosed natural_numberEquality lambdaEquality productEquality setElimination rename multiplyEquality because_Cache dependent_functionElimination allFunctionality addLevel orFunctionality unionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis imageMemberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll dependent_set_memberEquality inlFormation inrFormation

Latex:
\mforall{}p:\mBbbZ{}.  (prime(p)  {}\mRightarrow{}  ((\mneg{}(p  =  0))  \mwedge{}  (\mneg{}(p  \msim{}  1))  \mwedge{}  (\mforall{}a:\mBbbZ{}.  ((a  |  p)  {}\mRightarrow{}  ((a  \msim{}  1)  \mvee{}  (a  \msim{}  p))))))



Date html generated: 2017_04_17-AM-09_42_27
Last ObjectModification: 2017_02_27-PM-05_37_32

Theory : num_thy_1


Home Index