Nuprl Lemma : prime_elim
∀p:ℤ. (prime(p)
⇒ ((¬(p = 0 ∈ ℤ)) ∧ (¬(p ~ 1)) ∧ (∀a:ℤ. ((a | p)
⇒ ((a ~ 1) ∨ (a ~ p))))))
Proof
Definitions occuring in Statement :
prime: prime(a)
,
assoced: a ~ b
,
divides: b | a
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
atomic: atomic(a)
,
and: P ∧ Q
,
not: ¬A
,
false: False
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
int_nzero: ℤ-o
,
so_apply: x[s]
,
or: P ∨ Q
,
reducible: reducible(a)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
divides: b | a
,
exists: ∃x:A. B[x]
,
decidable: Dec(P)
,
squash: ↓T
,
true: True
,
guard: {T}
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
nequal: a ≠ b ∈ T
Lemmas referenced :
prime_imp_atomic,
equal-wf-base,
int_subtype_base,
assoced_wf,
divides_wf,
prime_wf,
not_wf,
exists_wf,
int_nzero_wf,
equal-wf-base-T,
all_wf,
or_wf,
decidable__not,
decidable__assoced,
iff_transitivity,
iff_weakening_uiff,
not_over_exists,
not_over_and,
dneg_elim_a,
decidable__equal_int,
equal_wf,
squash_wf,
true_wf,
iff_weakening_equal,
satisfiable-full-omega-tt,
intformand_wf,
intformeq_wf,
itermVar_wf,
itermMultiply_wf,
itermConstant_wf,
intformnot_wf,
int_formula_prop_and_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_mul_lemma,
int_term_value_constant_lemma,
int_formula_prop_not_lemma,
int_formula_prop_wf,
nequal_wf,
assoced_weakening,
mul-commutes,
one-mul,
assoced_functionality_wrt_assoced,
multiply_functionality_wrt_assoced,
assoced_inversion
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_isectElimination,
hypothesis,
independent_pairFormation,
productElimination,
independent_functionElimination,
voidElimination,
intEquality,
applyEquality,
sqequalRule,
baseClosed,
natural_numberEquality,
lambdaEquality,
productEquality,
setElimination,
rename,
multiplyEquality,
because_Cache,
dependent_functionElimination,
allFunctionality,
addLevel,
orFunctionality,
unionElimination,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
equalityUniverse,
levelHypothesis,
imageMemberEquality,
dependent_pairFormation,
int_eqEquality,
isect_memberEquality,
voidEquality,
computeAll,
dependent_set_memberEquality,
inlFormation,
inrFormation
Latex:
\mforall{}p:\mBbbZ{}. (prime(p) {}\mRightarrow{} ((\mneg{}(p = 0)) \mwedge{} (\mneg{}(p \msim{} 1)) \mwedge{} (\mforall{}a:\mBbbZ{}. ((a | p) {}\mRightarrow{} ((a \msim{} 1) \mvee{} (a \msim{} p))))))
Date html generated:
2017_04_17-AM-09_42_27
Last ObjectModification:
2017_02_27-PM-05_37_32
Theory : num_thy_1
Home
Index