Nuprl Lemma : prime_elim
∀p:ℤ. (prime(p) 
⇒ ((¬(p = 0 ∈ ℤ)) ∧ (¬(p ~ 1)) ∧ (∀a:ℤ. ((a | p) 
⇒ ((a ~ 1) ∨ (a ~ p))))))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
assoced: a ~ b
, 
divides: b | a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
atomic: atomic(a)
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
int_nzero: ℤ-o
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
reducible: reducible(a)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
prime_imp_atomic, 
equal-wf-base, 
int_subtype_base, 
assoced_wf, 
divides_wf, 
prime_wf, 
not_wf, 
exists_wf, 
int_nzero_wf, 
equal-wf-base-T, 
all_wf, 
or_wf, 
decidable__not, 
decidable__assoced, 
iff_transitivity, 
iff_weakening_uiff, 
not_over_exists, 
not_over_and, 
dneg_elim_a, 
decidable__equal_int, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
nequal_wf, 
assoced_weakening, 
mul-commutes, 
one-mul, 
assoced_functionality_wrt_assoced, 
multiply_functionality_wrt_assoced, 
assoced_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
voidElimination, 
intEquality, 
applyEquality, 
sqequalRule, 
baseClosed, 
natural_numberEquality, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
multiplyEquality, 
because_Cache, 
dependent_functionElimination, 
allFunctionality, 
addLevel, 
orFunctionality, 
unionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
inlFormation, 
inrFormation
Latex:
\mforall{}p:\mBbbZ{}.  (prime(p)  {}\mRightarrow{}  ((\mneg{}(p  =  0))  \mwedge{}  (\mneg{}(p  \msim{}  1))  \mwedge{}  (\mforall{}a:\mBbbZ{}.  ((a  |  p)  {}\mRightarrow{}  ((a  \msim{}  1)  \mvee{}  (a  \msim{}  p))))))
Date html generated:
2017_04_17-AM-09_42_27
Last ObjectModification:
2017_02_27-PM-05_37_32
Theory : num_thy_1
Home
Index