Nuprl Lemma : prime_imp_atomic
∀[a:ℤ]. atomic(a) supposing prime(a)
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
atomic: atomic(a)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
atomic: atomic(a)
, 
prime: prime(a)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
reducible: reducible(a)
, 
exists: ∃x:A. B[x]
, 
int_nzero: ℤ-o
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
assoced_wf, 
reducible_wf, 
not_wf, 
divides_wf, 
all_wf, 
or_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
divides_reflexivity, 
self_divisor_mul, 
mul_com
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
independent_pairFormation, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
intEquality, 
applyEquality, 
baseClosed, 
natural_numberEquality, 
Error :productIsType, 
Error :universeIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
multiplyEquality, 
Error :unionIsType, 
isect_memberEquality, 
voidElimination, 
productEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
setElimination, 
rename, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
instantiate, 
universeEquality, 
independent_isectElimination, 
unionElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[a:\mBbbZ{}].  atomic(a)  supposing  prime(a)
Date html generated:
2019_06_20-PM-02_23_01
Last ObjectModification:
2018_09_26-PM-05_56_30
Theory : num_thy_1
Home
Index