Nuprl Lemma : prime_imp_atomic

[a:ℤ]. atomic(a) supposing prime(a)


Proof




Definitions occuring in Statement :  prime: prime(a) atomic: atomic(a) uimplies: supposing a uall: [x:A]. B[x] int:
Definitions unfolded in proof :  atomic: atomic(a) prime: prime(a) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] reducible: reducible(a) exists: x:A. B[x] int_nzero: -o squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-wf-base int_subtype_base assoced_wf reducible_wf not_wf divides_wf all_wf or_wf squash_wf true_wf subtype_rel_self iff_weakening_equal divides_reflexivity self_divisor_mul mul_com
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin hypothesis independent_pairFormation independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache extract_by_obid isectElimination intEquality applyEquality baseClosed natural_numberEquality Error :productIsType,  Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  multiplyEquality Error :unionIsType,  isect_memberEquality voidElimination productEquality functionEquality equalityTransitivity equalitySymmetry lambdaFormation setElimination rename independent_functionElimination imageElimination imageMemberEquality instantiate universeEquality independent_isectElimination unionElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[a:\mBbbZ{}].  atomic(a)  supposing  prime(a)



Date html generated: 2019_06_20-PM-02_23_01
Last ObjectModification: 2018_09_26-PM-05_56_30

Theory : num_thy_1


Home Index