Nuprl Lemma : self_divisor_mul

a:ℤ-o. ∀b:ℤ.  (((a b) a)  (b 1))


Proof




Definitions occuring in Statement :  assoced: b divides: a int_nzero: -o all: x:A. B[x] implies:  Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] int_nzero: -o prop: top: Top assoced: b and: P ∧ Q divides: a exists: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  divides_wf istype-int int_nzero_wf istype-void mul-commutes one-mul int_subtype_base mul_cancel_in_assoced
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis because_Cache Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :dependent_pairFormation_alt,  Error :equalityIsType4,  Error :inhabitedIsType,  applyEquality dependent_functionElimination natural_numberEquality independent_functionElimination

Latex:
\mforall{}a:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}b:\mBbbZ{}.    (((a  *  b)  |  a)  {}\mRightarrow{}  (b  \msim{}  1))



Date html generated: 2019_06_20-PM-02_22_57
Last ObjectModification: 2018_10_03-AM-00_12_37

Theory : num_thy_1


Home Index