Nuprl Lemma : dneg_elim_a
∀[A:ℙ]. (Dec(A) ⇒ (¬¬A ⇐⇒ A))
Proof
Definitions occuring in Statement : 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
uimplies: b supposing a
Lemmas referenced : 
not_wf, 
false_wf, 
decidable_wf, 
dneg_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
cumulativity, 
Error :universeIsType, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A:\mBbbP{}].  (Dec(A)  {}\mRightarrow{}  (\mneg{}\mneg{}A  \mLeftarrow{}{}\mRightarrow{}  A))
 Date html generated: 
2019_06_20-AM-11_15_50
 Last ObjectModification: 
2018_09_26-AM-10_23_48
Theory : core_2
Home
Index