Nuprl Lemma : mul-list-bag-product
∀L:ℤ List. (Π(L)  = Π(L) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
int-bag-product: Π(b)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
int-bag-product: Π(b)
, 
mul-list: Π(ns) 
, 
bag-product: Πx ∈ b. f[x]
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_wf, 
list_induction, 
all_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
list_accum_nil_lemma, 
reduce_nil_lemma, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
list_accum_cons_lemma, 
reduce_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
reduce_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
rename, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
multiplyEquality, 
imageMemberEquality, 
productElimination
Latex:
\mforall{}L:\mBbbZ{}  List.  (\mPi{}(L)    =  \mPi{}(L))
Date html generated:
2018_05_21-PM-06_57_39
Last ObjectModification:
2017_07_26-PM-04_59_55
Theory : general
Home
Index