Nuprl Lemma : mul-list-bag-product

L:ℤ List. (L)  = Π(L) ∈ ℤ)


Proof




Definitions occuring in Statement :  mul-list: Π(ns)  int-bag-product: Π(b) list: List all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  int-bag-product: Π(b) mul-list: Π(ns)  bag-product: Πx ∈ b. f[x] bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_wf list_induction all_wf equal-wf-base list_subtype_base int_subtype_base list_accum_nil_lemma reduce_nil_lemma decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf list_accum_cons_lemma reduce_cons_lemma equal_wf squash_wf true_wf reduce_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis lambdaEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination natural_numberEquality dependent_pairFormation int_eqEquality computeAll rename imageElimination equalityTransitivity equalitySymmetry universeEquality multiplyEquality imageMemberEquality productElimination

Latex:
\mforall{}L:\mBbbZ{}  List.  (\mPi{}(L)    =  \mPi{}(L))



Date html generated: 2018_05_21-PM-06_57_39
Last ObjectModification: 2017_07_26-PM-04_59_55

Theory : general


Home Index