Nuprl Lemma : int-bag-product_wf
∀[b:bag(ℤ)]. (Π(b) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int-bag-product: Π(b)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-bag-product: Π(b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
comm: Comm(T;op)
Lemmas referenced : 
bag_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
bag-product_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
lambdaEquality, 
multiplyEquality, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[b:bag(\mBbbZ{})].  (\mPi{}(b)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_15-PM-02_33_14
Last ObjectModification:
2016_01_16-AM-08_52_56
Theory : bags
Home
Index