Nuprl Lemma : prime-product-injection

Inj(bag(Prime);ℕ+b.Π(b))


Proof




Definitions occuring in Statement :  Prime: Prime int-bag-product: Π(b) bag: bag(T) inject: Inj(A;B;f) nat_plus: + lambda: λx.A[x]
Definitions unfolded in proof :  inject: Inj(A;B;f) all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat_plus: + subtype_rel: A ⊆B uimplies: supposing a Prime: Prime int_upper: {i...} squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  equal_wf nat_plus_wf int-bag-product_wf subtype_rel_bag Prime_wf bag-product-primes less_than_wf bag_wf factors_wf squash_wf true_wf factors-prime-product iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality hypothesisEquality applyEquality intEquality independent_isectElimination lambdaEquality setElimination rename because_Cache dependent_functionElimination natural_numberEquality applyLambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
Inj(bag(Prime);\mBbbN{}\msupplus{};\mlambda{}b.\mPi{}(b))



Date html generated: 2018_05_21-PM-07_23_04
Last ObjectModification: 2017_07_26-PM-05_06_07

Theory : general


Home Index