Nuprl Lemma : factors_wf

[n:ℕ+]. (factors(n) ∈ bag(Prime))


Proof




Definitions occuring in Statement :  factors: factors(n) Prime: Prime bag: bag(T) nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T factors: factors(n) nat_plus: + all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top subtype_rel: A ⊆B
Lemmas referenced :  eq_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int empty-bag_wf Prime_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot factorization_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf equal_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed because_Cache intEquality independent_functionElimination productElimination independent_isectElimination independent_pairFormation impliesFunctionality dependent_functionElimination dependent_set_memberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (factors(n)  \mmember{}  bag(Prime))



Date html generated: 2018_05_21-PM-06_58_09
Last ObjectModification: 2017_07_26-PM-05_00_13

Theory : general


Home Index