Nuprl Lemma : bag-product-primes

b:bag(Prime). 0 < Π(b)


Proof




Definitions occuring in Statement :  Prime: Prime int-bag-product: Π(b) bag: bag(T) less_than: a < b all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a Prime: Prime int_upper: {i...} implies:  Q squash: T exists: x:A. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q l_member: (x ∈ l) cand: c∧ B sq_type: SQType(T) guard: {T} nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  bag_wf Prime_wf int-bag-product-positive subtype_rel_bag bag_to_squash_list bag-member_wf bag-member-list decidable__int_equal subtype_rel_list subtype_base_sq int_subtype_base select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf int_upper_properties decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf member-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality intEquality independent_isectElimination lambdaEquality setElimination rename because_Cache sqequalRule isect_memberFormation imageElimination productElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality independent_functionElimination dependent_functionElimination instantiate cumulativity equalityTransitivity natural_numberEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}b:bag(Prime).  0  <  \mPi{}(b)



Date html generated: 2018_05_21-PM-07_22_45
Last ObjectModification: 2017_07_26-PM-05_05_52

Theory : general


Home Index