Nuprl Lemma : bag-product-primes
∀b:bag(Prime). 0 < Π(b)
Proof
Definitions occuring in Statement : 
Prime: Prime
, 
int-bag-product: Π(b)
, 
bag: bag(T)
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
Prime: Prime
, 
int_upper: {i...}
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
bag_wf, 
Prime_wf, 
int-bag-product-positive, 
subtype_rel_bag, 
bag_to_squash_list, 
bag-member_wf, 
bag-member-list, 
decidable__int_equal, 
subtype_rel_list, 
subtype_base_sq, 
int_subtype_base, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_upper_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
member-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
isect_memberFormation, 
imageElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
independent_functionElimination, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}b:bag(Prime).  0  <  \mPi{}(b)
Date html generated:
2018_05_21-PM-07_22_45
Last ObjectModification:
2017_07_26-PM-05_05_52
Theory : general
Home
Index