Nuprl Lemma : bag-member-list

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀x:T. ∀L:T List.  (x ↓∈ ⇐⇒ (x ∈ L))))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q bag-member: x ↓∈ bs squash: T so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] bag: bag(T) quotient: x,y:A//B[x; y] sq_stable: SqStable(P) guard: {T}
Lemmas referenced :  bag-member_wf list-subtype-bag l_member_wf list_wf all_wf decidable_wf equal_wf member_wf permutation_wf sq_stable__l_member member-permutation bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality because_Cache independent_isectElimination lambdaEquality hypothesis sqequalRule imageElimination imageMemberEquality baseClosed universeEquality productElimination pertypeElimination productEquality dependent_functionElimination independent_functionElimination dependent_pairFormation

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}x:T.  \mforall{}L:T  List.    (x  \mdownarrow{}\mmember{}  L  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))))



Date html generated: 2017_10_01-AM-08_53_39
Last ObjectModification: 2017_07_26-PM-04_35_23

Theory : bags


Home Index