Nuprl Lemma : bag-member-list
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀x:T. ∀L:T List.  (x ↓∈ L 
⇐⇒ (x ∈ L))))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
l_member: (x ∈ l)
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
sq_stable: SqStable(P)
, 
guard: {T}
Lemmas referenced : 
bag-member_wf, 
list-subtype-bag, 
l_member_wf, 
list_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
member_wf, 
permutation_wf, 
sq_stable__l_member, 
member-permutation, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
hypothesis, 
sqequalRule, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
pertypeElimination, 
productEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}x:T.  \mforall{}L:T  List.    (x  \mdownarrow{}\mmember{}  L  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L))))
Date html generated:
2017_10_01-AM-08_53_39
Last ObjectModification:
2017_07_26-PM-04_35_23
Theory : bags
Home
Index