Nuprl Lemma : int-bag-product-positive
∀[b:bag(ℤ)]. 0 < Π(b) supposing ∀[x:ℤ]. (x ↓∈ b 
⇒ 0 < x)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
int-bag-product: Π(b)
, 
bag: bag(T)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
int-bag-product: Π(b)
, 
bag-product: Πx ∈ b. f[x]
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
nat_plus: ℕ+
, 
guard: {T}
, 
or: P ∨ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
subtype_rel: A ⊆r B
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
true: True
Lemmas referenced : 
istype-int, 
bag-member_wf, 
istype-less_than, 
member-less_than, 
int-bag-product_wf, 
bag_wf, 
bag_to_squash_list, 
less_than_wf, 
bag-member-list, 
decidable__equal_int, 
l_member_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list-cases, 
list_accum_nil_lemma, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
nat_plus_wf, 
nil_wf, 
product_subtype_list, 
colength-cons-not-zero, 
istype-nat, 
colength_wf_list, 
istype-le, 
list_wf, 
list_accum_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
list_accum_cons_lemma, 
cons_wf, 
cons_member, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
add-is-int-iff, 
false_wf, 
length_wf, 
list_subtype_base, 
mul_nat_plus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
isectIsType, 
extract_by_obid, 
functionIsType, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
natural_numberEquality, 
isect_memberEquality_alt, 
independent_isectElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
imageElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
isectEquality, 
functionEquality, 
rename, 
lambdaFormation_alt, 
independent_functionElimination, 
dependent_functionElimination, 
setElimination, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
functionIsTypeImplies, 
unionElimination, 
because_Cache, 
hypothesis_subsumption, 
equalityIstype, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
instantiate, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
sqequalBase, 
inrFormation_alt, 
pointwiseFunctionality, 
productIsType, 
imageMemberEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[b:bag(\mBbbZ{})].  0  <  \mPi{}(b)  supposing  \mforall{}[x:\mBbbZ{}].  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  0  <  x)
Date html generated:
2020_05_20-AM-08_01_51
Last ObjectModification:
2019_11_27-PM-03_08_09
Theory : bags
Home
Index