Nuprl Lemma : int-bag-product-positive

[b:bag(ℤ)]. 0 < Π(b) supposing ∀[x:ℤ]. (x ↓∈  0 < x)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs int-bag-product: Π(b) bag: bag(T) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] implies:  Q natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: squash: T exists: x:A. B[x] rev_implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q int-bag-product: Π(b) bag-product: Πx ∈ b. f[x] bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nat_plus: + guard: {T} or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b subtype_rel: A ⊆B l_member: (x ∈ l) select: L[n] cand: c∧ B uiff: uiff(P;Q) true: True
Lemmas referenced :  istype-int bag-member_wf istype-less_than member-less_than int-bag-product_wf bag_wf bag_to_squash_list less_than_wf bag-member-list decidable__equal_int l_member_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma list-cases list_accum_nil_lemma decidable__lt intformnot_wf int_formula_prop_not_lemma nat_plus_wf nil_wf product_subtype_list colength-cons-not-zero istype-nat colength_wf_list istype-le list_wf list_accum_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf list_accum_cons_lemma cons_wf cons_member length_of_cons_lemma add_nat_plus length_wf_nat add-is-int-iff false_wf length_wf list_subtype_base mul_nat_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis sqequalRule isectIsType extract_by_obid functionIsType universeIsType sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality natural_numberEquality isect_memberEquality_alt independent_isectElimination isectIsTypeImplies inhabitedIsType imageElimination productElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality isectEquality functionEquality rename lambdaFormation_alt independent_functionElimination dependent_functionElimination setElimination intWeakElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination independent_pairFormation equalityTransitivity functionIsTypeImplies unionElimination because_Cache hypothesis_subsumption equalityIstype dependent_set_memberEquality_alt multiplyEquality instantiate baseApply closedConclusion baseClosed applyEquality sqequalBase inrFormation_alt pointwiseFunctionality productIsType imageMemberEquality dependent_set_memberEquality

Latex:
\mforall{}[b:bag(\mBbbZ{})].  0  <  \mPi{}(b)  supposing  \mforall{}[x:\mBbbZ{}].  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  0  <  x)



Date html generated: 2020_05_20-AM-08_01_51
Last ObjectModification: 2019_11_27-PM-03_08_09

Theory : bags


Home Index