Nuprl Lemma : factors-prime-product

[b:bag(Prime)]. (factors(Π(b)) b ∈ bag(Prime))


Proof




Definitions occuring in Statement :  factors: factors(n) Prime: Prime int-bag-product: Π(b) bag: bag(T) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] squash: T subtype_rel: A ⊆B uimplies: supposing a Prime: Prime int_upper: {i...} prop: so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] implies:  Q sq_stable: SqStable(P) exists: x:A. B[x] factors: factors(n) empty-bag: {} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top true: True iff: ⇐⇒ Q nat: bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] label: ...$L... t permutation: permutation(T;L1;L2) cand: c∧ B
Lemmas referenced :  bag_wf Prime_wf bag-product-primes bag_to_squash_list sq_stable__all less_than_wf int-bag-product_wf subtype_rel_bag equal_wf factors_wf sq_stable__equal squash_wf list-subtype-bag product-factors eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nil_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int factorization_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_wf list_wf int_upper_wf prime_wf mul-list_wf subtype_rel_list true_wf mul-list-bag-product iff_weakening_equal prime-factors-unique nat_wf subtype_rel_sets sq_stable__le set_wf quotient-member-eq permutation_wf permutation-equiv inject_wf int_seg_wf length_wf permute_list_wf list_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality imageElimination natural_numberEquality applyEquality intEquality independent_isectElimination lambdaEquality setElimination rename because_Cache sqequalRule dependent_set_memberEquality independent_functionElimination lambdaFormation axiomEquality productElimination promote_hyp hyp_replacement equalitySymmetry applyLambdaEquality functionEquality imageMemberEquality baseClosed equalityTransitivity unionElimination equalityElimination dependent_pairFormation instantiate cumulativity voidElimination int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll setEquality universeEquality productEquality functionExtensionality

Latex:
\mforall{}[b:bag(Prime)].  (factors(\mPi{}(b))  =  b)



Date html generated: 2018_05_21-PM-07_22_57
Last ObjectModification: 2017_07_26-PM-05_06_00

Theory : general


Home Index