Nuprl Lemma : factors-prime-product
∀[b:bag(Prime)]. (factors(Π(b)) = b ∈ bag(Prime))
Proof
Definitions occuring in Statement : 
factors: factors(n)
, 
Prime: Prime
, 
int-bag-product: Π(b)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
Prime: Prime
, 
int_upper: {i...}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
factors: factors(n)
, 
empty-bag: {}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
nat: ℕ
, 
bag: bag(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
label: ...$L... t
, 
permutation: permutation(T;L1;L2)
, 
cand: A c∧ B
Lemmas referenced : 
bag_wf, 
Prime_wf, 
bag-product-primes, 
bag_to_squash_list, 
sq_stable__all, 
less_than_wf, 
int-bag-product_wf, 
subtype_rel_bag, 
equal_wf, 
factors_wf, 
sq_stable__equal, 
squash_wf, 
list-subtype-bag, 
product-factors, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
nil_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
factorization_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
le_wf, 
list_wf, 
int_upper_wf, 
prime_wf, 
mul-list_wf, 
subtype_rel_list, 
true_wf, 
mul-list-bag-product, 
iff_weakening_equal, 
prime-factors-unique, 
nat_wf, 
subtype_rel_sets, 
sq_stable__le, 
set_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
inject_wf, 
int_seg_wf, 
length_wf, 
permute_list_wf, 
list_subtype_base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
imageElimination, 
natural_numberEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
dependent_set_memberEquality, 
independent_functionElimination, 
lambdaFormation, 
axiomEquality, 
productElimination, 
promote_hyp, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
cumulativity, 
voidElimination, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
universeEquality, 
productEquality, 
functionExtensionality
Latex:
\mforall{}[b:bag(Prime)].  (factors(\mPi{}(b))  =  b)
Date html generated:
2018_05_21-PM-07_22_57
Last ObjectModification:
2017_07_26-PM-05_06_00
Theory : general
Home
Index