Nuprl Lemma : prime-factors-unique
∀ps:{m:ℕ| prime(m)}  List. ∀qs:{qs:{m:ℕ| prime(m)}  List| Π(ps)  = Π(qs)  ∈ ℤ} .  permutation(ℤ;ps;qs)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
prime: prime(a)
, 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
mul-list: Π(ns) 
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
divides: b | a
, 
false: False
, 
and: P ∧ Q
, 
prime: prime(a)
, 
assoced: a ~ b
, 
not: ¬A
, 
label: ...$L... t
, 
guard: {T}
, 
permutation: permutation(T;L1;L2)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
so_apply: x[s1;s2]
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
comm: Comm(T;op)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
list_induction, 
nat_wf, 
prime_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
set_subtype_base, 
istype-nat, 
le_wf, 
istype-int, 
int_subtype_base, 
permutation_wf, 
subtype_rel_list, 
reduce_nil_lemma, 
reduce_cons_lemma, 
set_wf, 
nil_wf, 
reduce_wf, 
equal-wf-base-T, 
permutation-nil, 
one_divs_any, 
positive-prime-divides-product, 
l_member-permutation, 
cons_wf, 
permutation_inversion, 
inject_wf, 
int_seg_wf, 
length_wf, 
permute_list_wf, 
subtype_base_sq, 
reduce-permutation, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
permutation_functionality_wrt_permutation, 
cons_functionality_wrt_permutation, 
permutation_weakening, 
mul_cancel_in_eq, 
nequal_wf, 
mul-list_wf, 
equal_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality_alt, 
functionEquality, 
hypothesisEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
natural_numberEquality, 
setIsType, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
Error :memTop, 
functionIsType, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
multiplyEquality, 
lambdaEquality, 
lambdaFormation, 
dependent_pairFormation, 
productElimination, 
independent_pairFormation, 
inhabitedIsType, 
dependent_pairFormation_alt, 
equalityTransitivity, 
promote_hyp, 
productIsType, 
instantiate, 
cumulativity, 
isect_memberFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
dependent_set_memberEquality_alt, 
levelHypothesis, 
addLevel
Latex:
\mforall{}ps:\{m:\mBbbN{}|  prime(m)\}    List.  \mforall{}qs:\{qs:\{m:\mBbbN{}|  prime(m)\}    List|  \mPi{}(ps)    =  \mPi{}(qs)  \}  .    permutation(\mBbbZ{};ps;qs)
Date html generated:
2020_05_20-AM-08_08_03
Last ObjectModification:
2020_01_04-PM-11_11_31
Theory : general
Home
Index