Nuprl Lemma : positive-prime-divides-product

p:{p:ℕprime(p)} . ∀qs:{p:ℕprime(p)}  List.  ((p reduce(λx,y. (x y);1;qs))  (p ∈ qs))


Proof




Definitions occuring in Statement :  prime: prime(a) divides: a l_member: (x ∈ l) reduce: reduce(f;k;as) list: List nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] top: Top prime: prime(a) and: P ∧ Q sq_stable: SqStable(P) squash: T not: ¬A assoced: b false: False iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q guard: {T} uimplies: supposing a
Lemmas referenced :  positive-prime-divides-prime equal_wf cons_member one_divs_any decidable__equal_nat decidable__equal_set sq_stable__l_member cons_wf nil_wf set_wf reduce_cons_lemma reduce_nil_lemma list_wf l_member_wf reduce_wf divides_wf prime_wf nat_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination setEquality hypothesis setElimination rename hypothesisEquality sqequalRule lambdaEquality functionEquality intEquality multiplyEquality natural_numberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache dependent_set_memberEquality addLevel productElimination levelHypothesis introduction imageMemberEquality baseClosed imageElimination independent_pairFormation unionElimination inlFormation inrFormation independent_isectElimination

Latex:
\mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  \mforall{}qs:\{p:\mBbbN{}|  prime(p)\}    List.    ((p  |  reduce(\mlambda{}x,y.  (x  *  y);1;qs))  {}\mRightarrow{}  (p  \mmember{}  qs))



Date html generated: 2016_05_14-PM-04_27_17
Last ObjectModification: 2016_01_14-PM-11_37_40

Theory : num_thy_1


Home Index