Nuprl Lemma : positive-prime-divides-prime

[p,q:ℕ].  (p q ∈ ℕsupposing ((p q) and prime(q) and prime(p))


Proof




Definitions occuring in Statement :  prime: prime(a) divides: a nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: uimplies: supposing a implies:  Q prop: iff: ⇐⇒ Q and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  le_wf int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int nat_properties assoced_nelim prime_wf divides_wf prime-divides-prime
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction hypothesis sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality independent_functionElimination isectElimination sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache productElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality

Latex:
\mforall{}[p,q:\mBbbN{}].    (p  =  q)  supposing  ((p  |  q)  and  prime(q)  and  prime(p))



Date html generated: 2016_05_14-PM-04_27_12
Last ObjectModification: 2016_01_14-PM-11_35_02

Theory : num_thy_1


Home Index