Nuprl Lemma : bag-member-filter-set
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[x:{x:T| ↑P[x]} ]. ∀[bs:bag(T)].  uiff(x ↓∈ [x∈bs|P[x]];x ↓∈ bs)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
bag-member: x ↓∈ bs
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bag-filter: [x∈b|p[x]]
, 
true: True
Lemmas referenced : 
sq_stable__bag-member, 
bag-member_wf, 
assert_wf, 
bag-filter_wf, 
bag_wf, 
set_wf, 
bool_wf, 
bag-member-subtype, 
bag-member-filter, 
filter_type, 
l_member_set2, 
member_filter, 
equal_wf, 
list-subtype-bag, 
l_member_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
lambdaEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
productEquality, 
natural_numberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\{x:T|  \muparrow{}P[x]\}  ].  \mforall{}[bs:bag(T)].    uiff(x  \mdownarrow{}\mmember{}  [x\mmember{}bs|P[x]];x  \mdownarrow{}\mmember{}  bs)
Date html generated:
2017_10_01-AM-08_54_17
Last ObjectModification:
2017_07_26-PM-04_36_01
Theory : bags
Home
Index