Nuprl Lemma : bag-member-filter-set

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[x:{x:T| ↑P[x]} ]. ∀[bs:bag(T)].  uiff(x ↓∈ [x∈bs|P[x]];x ↓∈ bs)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_stable: SqStable(P) implies:  Q squash: T bag-member: x ↓∈ bs prop: so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B all: x:A. B[x] exists: x:A. B[x] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q bag-filter: [x∈b|p[x]] true: True
Lemmas referenced :  sq_stable__bag-member bag-member_wf assert_wf bag-filter_wf bag_wf set_wf bool_wf bag-member-subtype bag-member-filter filter_type l_member_set2 member_filter equal_wf list-subtype-bag l_member_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation setElimination thin rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination setEquality cumulativity applyEquality functionExtensionality dependent_set_memberEquality lambdaEquality because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality independent_isectElimination dependent_functionElimination dependent_pairFormation productEquality natural_numberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:\{x:T|  \muparrow{}P[x]\}  ].  \mforall{}[bs:bag(T)].    uiff(x  \mdownarrow{}\mmember{}  [x\mmember{}bs|P[x]];x  \mdownarrow{}\mmember{}  bs)



Date html generated: 2017_10_01-AM-08_54_17
Last ObjectModification: 2017_07_26-PM-04_36_01

Theory : bags


Home Index