Nuprl Lemma : bag-member-subtype
∀[A,B:Type].  ∀b:bag(A). ∀x:A.  (x ↓∈ b 
⇒ x ↓∈ b) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
bag-member: x ↓∈ bs
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
bag_to_squash_list, 
sq_stable__bag-member, 
subtype_rel_bag, 
bag-member_wf, 
list-subtype-bag, 
subtype_rel_list, 
l_member_subtype, 
equal_wf, 
bag_wf, 
l_member_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
rename, 
dependent_pairFormation, 
independent_pairFormation, 
dependent_functionElimination, 
productEquality, 
lambdaEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}b:bag(A).  \mforall{}x:A.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  b)  supposing  A  \msubseteq{}r  B
Date html generated:
2017_10_01-AM-08_53_12
Last ObjectModification:
2017_07_26-PM-04_34_47
Theory : bags
Home
Index