Nuprl Lemma : bag-member-subtype

[A,B:Type].  ∀b:bag(A). ∀x:A.  (x ↓∈  x ↓∈ b) supposing A ⊆B


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q squash: T subtype_rel: A ⊆B sq_stable: SqStable(P) exists: x:A. B[x] prop: bag-member: x ↓∈ bs and: P ∧ Q cand: c∧ B
Lemmas referenced :  bag_to_squash_list sq_stable__bag-member subtype_rel_bag bag-member_wf list-subtype-bag subtype_rel_list l_member_subtype equal_wf bag_wf l_member_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality imageElimination applyEquality hypothesis sqequalRule independent_isectElimination independent_functionElimination productElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality cumulativity rename dependent_pairFormation independent_pairFormation dependent_functionElimination productEquality lambdaEquality imageMemberEquality baseClosed isect_memberEquality equalityTransitivity universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}b:bag(A).  \mforall{}x:A.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  b)  supposing  A  \msubseteq{}r  B



Date html generated: 2017_10_01-AM-08_53_12
Last ObjectModification: 2017_07_26-PM-04_34_47

Theory : bags


Home Index