Nuprl Lemma : bag-partitions_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  (bag-partitions(eq;bs) ∈ bag(bag(T) × bag(T))) supposing valueall-type(T)


Proof




Definitions occuring in Statement :  bag-partitions: bag-partitions(eq;bs) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-partitions: bag-partitions(eq;bs) so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) product-deq: product-deq(A;B;a;b)
Lemmas referenced :  valueall-type-has-valueall bag_wf bag-valueall-type product-valueall-type bag-splits_wf evalall-reduce bag-to-set_wf deq_wf valueall-type_wf product-deq_wf bag-deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis independent_isectElimination lambdaEquality independent_functionElimination lambdaFormation because_Cache dependent_functionElimination callbyvalueReduce cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].    (bag-partitions(eq;bs)  \mmember{}  bag(bag(T)  \mtimes{}  bag(T))) 
    supposing  valueall-type(T)



Date html generated: 2016_05_15-PM-08_05_53
Last ObjectModification: 2015_12_27-PM-04_13_53

Theory : bags_2


Home Index