Nuprl Lemma : bag-partitions_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  (bag-partitions(eq;bs) ∈ bag(bag(T) × bag(T))) supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
bag-partitions: bag-partitions(eq;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bag-partitions: bag-partitions(eq;bs)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
product-deq: product-deq(A;B;a;b)
Lemmas referenced : 
valueall-type-has-valueall, 
bag_wf, 
bag-valueall-type, 
product-valueall-type, 
bag-splits_wf, 
evalall-reduce, 
bag-to-set_wf, 
deq_wf, 
valueall-type_wf, 
product-deq_wf, 
bag-deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
dependent_functionElimination, 
callbyvalueReduce, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].    (bag-partitions(eq;bs)  \mmember{}  bag(bag(T)  \mtimes{}  bag(T))) 
    supposing  valueall-type(T)
Date html generated:
2016_05_15-PM-08_05_53
Last ObjectModification:
2015_12_27-PM-04_13_53
Theory : bags_2
Home
Index