Nuprl Lemma : div-positive-1
∀n:ℕ+. ∀i:{1..n + 1-}.  0 < n ÷ i
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
divide: n ÷ m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
top: Top
, 
true: True
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable_from_decidable, 
less-iff-le, 
zero-mul, 
le_antisymmetry_iff, 
rem_bounds_1, 
int_subtype_base, 
subtype_base_sq, 
equal_wf, 
or_wf, 
le-add-cancel2, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
not-le-2, 
decidable__le, 
nequal_wf, 
less_than_wf, 
le_wf, 
and_wf, 
subtype_rel_sets, 
div_rem_sum, 
nat_plus_wf, 
int_seg_wf, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
not-equal-2, 
not-lt-2, 
decidable__lt, 
decidable__int_equal, 
false_wf, 
int_seg_subtype_nat_plus, 
nat_plus_subtype_nat, 
div_bounds_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
productElimination, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
setEquality, 
inlFormation, 
inrFormation, 
addLevel, 
orFunctionality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}i:\{1..n  +  1\msupminus{}\}.    0  <  n  \mdiv{}  i
Date html generated:
2016_05_13-PM-03_35_39
Last ObjectModification:
2016_01_14-PM-06_39_48
Theory : arithmetic
Home
Index