Nuprl Lemma : div-positive-1

n:ℕ+. ∀i:{1..n 1-}.  0 < n ÷ i


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + less_than: a < b all: x:A. B[x] divide: n ÷ m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) top: Top true: True subtract: m int_seg: {i..j-} int_nzero: -o so_lambda: λ2x.t[x] lelt: i ≤ j < k so_apply: x[s] nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) guard: {T} sq_type: SQType(T) sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable_from_decidable less-iff-le zero-mul le_antisymmetry_iff rem_bounds_1 int_subtype_base subtype_base_sq equal_wf or_wf le-add-cancel2 minus-one-mul-top add-swap minus-one-mul not-le-2 decidable__le nequal_wf less_than_wf le_wf and_wf subtype_rel_sets div_rem_sum nat_plus_wf int_seg_wf minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le not-equal-2 not-lt-2 decidable__lt decidable__int_equal false_wf int_seg_subtype_nat_plus nat_plus_subtype_nat div_bounds_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule natural_numberEquality addEquality setElimination rename independent_isectElimination independent_pairFormation dependent_functionElimination productElimination unionElimination voidElimination independent_functionElimination lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality setEquality inlFormation inrFormation addLevel orFunctionality instantiate cumulativity equalityTransitivity equalitySymmetry multiplyEquality introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}i:\{1..n  +  1\msupminus{}\}.    0  <  n  \mdiv{}  i



Date html generated: 2016_05_13-PM-03_35_39
Last ObjectModification: 2016_01_14-PM-06_39_48

Theory : arithmetic


Home Index