Nuprl Lemma : bag-extensionality-no-repeats

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀[as,bs:bag(T)].
        uiff(as bs ∈ bag(T);∀x:T. uiff(x ↓∈ as;x ↓∈ bs)) supposing bag-no-repeats(T;as) ∧ bag-no-repeats(T;bs)))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) decidable: Dec(P) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q bag-member: x ↓∈ bs exists: x:A. B[x] bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) quotient: x,y:A//B[x; y] cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] respects-equality: respects-equality(S;T)
Lemmas referenced :  bag-member_wf squash_wf true_wf bag_wf istype-universe subtype_rel_self iff_weakening_equal bag-no-repeats_wf decidable_wf equal_wf bag_to_squash_list uiff_wf list-subtype-bag quotient-member-eq list_wf permutation_wf permutation-equiv permutation-when-no_repeats l_member_wf no_repeats_functionality_wrt_permutation permutation_inversion respects-equality-list-bag respects-equality-trivial bag-member-list-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation applyEquality lambdaEquality_alt imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed because_Cache independent_isectElimination independent_functionElimination dependent_functionElimination independent_pairEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsTypeImplies equalityIstype functionIsType productIsType isectIsType axiomEquality promote_hyp hyp_replacement applyLambdaEquality functionEquality rename pertypeElimination dependent_pairFormation_alt

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[as,bs:bag(T)].
                uiff(as  =  bs;\mforall{}x:T.  uiff(x  \mdownarrow{}\mmember{}  as;x  \mdownarrow{}\mmember{}  bs)) 
                supposing  bag-no-repeats(T;as)  \mwedge{}  bag-no-repeats(T;bs)))



Date html generated: 2020_05_20-AM-08_02_16
Last ObjectModification: 2020_01_04-PM-10_19_37

Theory : bags


Home Index