Nuprl Lemma : respects-equality-list-bag

[A,B:Type].  respects-equality(A List;bag(B)) supposing respects-equality(A;B)


Proof




Definitions occuring in Statement :  bag: bag(T) list: List uimplies: supposing a respects-equality: respects-equality(S;T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  list-subtype-bag equal_functionality_wrt_subtype_rel2 list_wf bag_wf respects-equality-bag change-equality-type istype-base respects-equality_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache independent_isectElimination lambdaEquality_alt universeIsType hypothesis equalityTransitivity equalitySymmetry independent_functionElimination dependent_functionElimination sqequalRule equalityIstype sqequalBase inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[A,B:Type].    respects-equality(A  List;bag(B))  supposing  respects-equality(A;B)



Date html generated: 2019_10_15-AM-10_59_51
Last ObjectModification: 2018_12_03-PM-00_13_17

Theory : bags


Home Index