Nuprl Lemma : no_repeats_functionality_wrt_permutation
∀[A:Type]. ∀as1,as2:A List.  (permutation(A;as1;as2) ⇒ (no_repeats(A;as1) ⇐⇒ no_repeats(A;as2)))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
no_repeats: no_repeats(T;l), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
permutation: permutation(T;L1;L2), 
exists: ∃x:A. B[x], 
no_repeats: no_repeats(T;l), 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
less_than': less_than'(a;b), 
inject: Inj(A;B;f)
Lemmas referenced : 
no_repeats_witness, 
no_repeats_wf, 
permutation_wf, 
list_wf, 
length_wf_nat, 
equal_wf, 
nat_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
not_wf, 
less_than_wf, 
length_wf, 
permute_list_wf, 
int_seg_wf, 
permute_list_length, 
lelt_wf, 
squash_wf, 
true_wf, 
permute_list_select, 
iff_weakening_equal, 
non_neg_length, 
decidable__lt, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_subtype_nat, 
false_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
permutation_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
independent_functionElimination, 
hypothesis, 
cumulativity, 
universeEquality, 
lambdaFormation, 
dependent_set_memberEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
voidElimination, 
because_Cache, 
equalityTransitivity, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionExtensionality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A:Type].  \mforall{}as1,as2:A  List.    (permutation(A;as1;as2)  {}\mRightarrow{}  (no\_repeats(A;as1)  \mLeftarrow{}{}\mRightarrow{}  no\_repeats(A;as2)))
Date html generated:
2017_04_17-AM-08_12_17
Last ObjectModification:
2017_02_27-PM-04_39_38
Theory : list_1
Home
Index