Nuprl Lemma : permutation-when-no_repeats

[T:Type]
  ∀sa,sb:T List.  ((∀x:T. ((x ∈ sa) ⇐⇒ (x ∈ sb)))  no_repeats(T;sb)  no_repeats(T;sa)  permutation(T;sb;sa))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: l_member: (x ∈ l) cand: c∧ B nat: ge: i ≥  subtype_rel: A ⊆B guard: {T} pi1: fst(t) inject: Inj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] no_repeats: no_repeats(T;l) less_than': less_than'(a;b) sq_type: SQType(T) true: True permutation: permutation(T;L1;L2)
Lemmas referenced :  select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma select_member nat_properties istype-le istype-less_than int_seg_wf no_repeats_wf l_member_wf list_wf istype-universe non_neg_length length_wf_nat pigeon-hole decidable__equal_int_seg set_subtype_base lelt_wf int_subtype_base int_seg_subtype_nat istype-false intformeq_wf int_formula_prop_eq_lemma subtype_base_sq istype-nat equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal le_wf less_than_wf decidable__equal_int subtype_rel_function int_seg_subtype le_weakening inject_wf permute_list_wf list_extensionality permute_list_length permute_list_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut hypothesis sqequalHypSubstitution dependent_functionElimination thin introduction extract_by_obid isectElimination hypothesisEquality setElimination rename because_Cache independent_isectElimination productElimination imageElimination sqequalRule natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination dependent_set_memberEquality_alt productIsType equalityIstype functionIsType inhabitedIsType instantiate universeEquality promote_hyp applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality functionExtensionality intEquality sqequalBase cumulativity imageMemberEquality baseClosed productEquality

Latex:
\mforall{}[T:Type]
    \mforall{}sa,sb:T  List.
        ((\mforall{}x:T.  ((x  \mmember{}  sa)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  sb)))
        {}\mRightarrow{}  no\_repeats(T;sb)
        {}\mRightarrow{}  no\_repeats(T;sa)
        {}\mRightarrow{}  permutation(T;sb;sa))



Date html generated: 2020_05_19-PM-09_45_17
Last ObjectModification: 2019_12_31-PM-00_12_11

Theory : list_1


Home Index