Nuprl Lemma : bag-summation-map

[add,zero:Top]. ∀[b:Top List]. ∀[f,g:Top].  (x∈bag-map(g;b)). f[x] ~ Σ(x∈b). f[g x])


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-map: bag-map(f;bs) list: List uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a sqequal: t
Definitions unfolded in proof :  bag-summation: Σ(x∈b). f[x] uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  bag-accum-map top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis because_Cache isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[add,zero:Top].  \mforall{}[b:Top  List].  \mforall{}[f,g:Top].    (\mSigma{}(x\mmember{}bag-map(g;b)).  f[x]  \msim{}  \mSigma{}(x\mmember{}b).  f[g  x])



Date html generated: 2016_05_15-PM-02_32_24
Last ObjectModification: 2015_12_27-AM-09_47_39

Theory : bags


Home Index