Nuprl Lemma : bag-summation-map
∀[add,zero:Top]. ∀[b:Top List]. ∀[f,g:Top].  (Σ(x∈bag-map(g;b)). f[x] ~ Σ(x∈b). f[g x])
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x], 
bag-map: bag-map(f;bs), 
list: T List, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-summation: Σ(x∈b). f[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Lemmas referenced : 
bag-accum-map, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[add,zero:Top].  \mforall{}[b:Top  List].  \mforall{}[f,g:Top].    (\mSigma{}(x\mmember{}bag-map(g;b)).  f[x]  \msim{}  \mSigma{}(x\mmember{}b).  f[g  x])
Date html generated:
2016_05_15-PM-02_32_24
Last ObjectModification:
2015_12_27-AM-09_47_39
Theory : bags
Home
Index