Nuprl Lemma : bag-accum-map
∀[L,y,f,g:Top].  (bag-accum(x,a.f[x;a];y;bag-map(g;L)) ~ bag-accum(x,a.f[x;g a];y;L))
Proof
Definitions occuring in Statement : 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
bag-map: bag-map(f;bs)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-map: bag-map(f;bs)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
Lemmas referenced : 
list_accum-map
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[L,y,f,g:Top].    (bag-accum(x,a.f[x;a];y;bag-map(g;L))  \msim{}  bag-accum(x,a.f[x;g  a];y;L))
Date html generated:
2016_05_15-PM-02_30_04
Last ObjectModification:
2015_12_27-AM-09_49_20
Theory : bags
Home
Index