Nuprl Lemma : bag-accum-map

[L,y,f,g:Top].  (bag-accum(x,a.f[x;a];y;bag-map(g;L)) bag-accum(x,a.f[x;g a];y;L))


Proof




Definitions occuring in Statement :  bag-accum: bag-accum(v,x.f[v; x];init;bs) bag-map: bag-map(f;bs) uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] apply: a sqequal: t
Definitions unfolded in proof :  bag-map: bag-map(f;bs) bag-accum: bag-accum(v,x.f[v; x];init;bs)
Lemmas referenced :  list_accum-map
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[L,y,f,g:Top].    (bag-accum(x,a.f[x;a];y;bag-map(g;L))  \msim{}  bag-accum(x,a.f[x;g  a];y;L))



Date html generated: 2016_05_15-PM-02_30_04
Last ObjectModification: 2015_12_27-AM-09_49_20

Theory : bags


Home Index