Nuprl Lemma : append-factors
∀n,m:ℕ+.  (factors(n * m) = (factors(n) + factors(m)) ∈ bag(Prime))
Proof
Definitions occuring in Statement : 
factors: factors(n)
, 
Prime: Prime
, 
bag-append: as + bs
, 
bag: bag(T)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
inject: Inj(A;B;f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
Prime: Prime
, 
int_upper: {i...}
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
prime-product-injection, 
factors_wf, 
mul_nat_plus, 
bag-append_wf, 
Prime_wf, 
bag-product-primes, 
equal_wf, 
squash_wf, 
true_wf, 
product-factors, 
int-bag-product_wf, 
subtype_rel_bag, 
iff_weakening_equal, 
int-bag-product-append, 
less_than_wf, 
nat_plus_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
multiplyEquality
Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.    (factors(n  *  m)  =  (factors(n)  +  factors(m)))
Date html generated:
2018_05_21-PM-07_23_28
Last ObjectModification:
2017_07_26-PM-05_06_22
Theory : general
Home
Index