Nuprl Lemma : int-bag-product-append
∀[b1,b2:bag(ℤ)].  (Π(b1 + b2) ~ Π(b1) * Π(b2))
Proof
Definitions occuring in Statement : 
int-bag-product: Π(b)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int-bag-product: Π(b)
, 
bag-product: Πx ∈ b. f[x]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
monoid_p: IsMonoid(T;op;id)
, 
and: P ∧ Q
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
ident: Ident(T;op;id)
, 
cand: A c∧ B
, 
comm: Comm(T;op)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
bag_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
itermConstant_wf, 
int_term_value_constant_lemma, 
bag-summation_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag-summation-append, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
independent_pairFormation, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality, 
productElimination, 
independent_pairEquality, 
multiplyEquality, 
applyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[b1,b2:bag(\mBbbZ{})].    (\mPi{}(b1  +  b2)  \msim{}  \mPi{}(b1)  *  \mPi{}(b2))
Date html generated:
2017_10_01-AM-08_51_39
Last ObjectModification:
2017_07_26-PM-04_33_25
Theory : bags
Home
Index