Nuprl Lemma : bag-map-no-repeats
∀[T1,T2:Type]. ∀[f:T1 ⟶ T2]. ∀[bs:bag(T1)].
  uiff(bag-no-repeats(T2;bag-map(f;bs));bag-no-repeats(T1;bs)) supposing Inj(T1;T2;f)
Proof
Definitions occuring in Statement : 
bag-no-repeats: bag-no-repeats(T;bs)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
inject: Inj(A;B;f)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
bag-no-repeats: bag-no-repeats(T;bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
bag-map: bag-map(f;bs)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
no_repeats: no_repeats(T;l)
, 
top: Top
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
inject: Inj(A;B;f)
Lemmas referenced : 
bag_to_squash_list, 
equal_wf, 
bag_wf, 
bag-map_wf, 
squash_wf, 
exists_wf, 
list_wf, 
list-subtype-bag, 
no_repeats_wf, 
inject_wf, 
no_repeats_functionality_wrt_permutation, 
length-map, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
length_wf, 
member_wf, 
map_wf, 
permutation_wf, 
subtype_rel_list, 
top_wf, 
lelt_wf, 
true_wf, 
iff_weakening_equal, 
select-map, 
no_repeats_map, 
subtype_rel_dep_function, 
l_member_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
equalityTransitivity, 
functionExtensionality, 
applyEquality, 
rename, 
lambdaEquality, 
productEquality, 
because_Cache, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
pertypeElimination, 
dependent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
voidEquality, 
lambdaFormation, 
setElimination, 
natural_numberEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[f:T1  {}\mrightarrow{}  T2].  \mforall{}[bs:bag(T1)].
    uiff(bag-no-repeats(T2;bag-map(f;bs));bag-no-repeats(T1;bs))  supposing  Inj(T1;T2;f)
Date html generated:
2017_10_01-AM-08_51_51
Last ObjectModification:
2017_07_26-PM-04_33_35
Theory : bags
Home
Index