Nuprl Lemma : no-repeats-bag-partitions

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].
  bag-no-repeats(bag(T) × bag(T);bag-partitions(eq;bs)) supposing valueall-type(T)


Proof




Definitions occuring in Statement :  bag-partitions: bag-partitions(eq;bs) bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-partitions: bag-partitions(eq;bs) callbyvalueall: callbyvalueall all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q has-value: (a)↓ has-valueall: has-valueall(a) bag-no-repeats: bag-no-repeats(T;bs) squash: T product-deq: product-deq(A;B;a;b)
Lemmas referenced :  bag-deq_wf product-deq_wf no-repeats-bag-to-set valueall-type-has-valueall deq_wf valueall-type_wf product-valueall-type bag-valueall-type bag-splits_wf bag_wf evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis dependent_functionElimination independent_isectElimination because_Cache lambdaEquality independent_functionElimination lambdaFormation imageElimination imageMemberEquality baseClosed isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].
    bag-no-repeats(bag(T)  \mtimes{}  bag(T);bag-partitions(eq;bs))  supposing  valueall-type(T)



Date html generated: 2016_05_15-PM-08_05_57
Last ObjectModification: 2016_01_16-PM-01_28_14

Theory : bags_2


Home Index