Nuprl Lemma : decidable__equal_product

[A:Type]. ∀[B:A ⟶ Type].
  ((∀a,b:A.  Dec(a b ∈ A))  (∀a:A. ∀u,v:B[a].  Dec(u v ∈ B[a]))  (∀x,y:a:A × B[a].  Dec(x y ∈ (a:A × B[a]))))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q so_apply: x[s] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} not: ¬A false: False pi2: snd(t) pi1: fst(t) uimplies: supposing a
Lemmas referenced :  all_wf decidable_wf equal_wf subtype_rel_self subtype_rel_wf not_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation productElimination thin cut hypothesis sqequalHypSubstitution dependent_functionElimination hypothesisEquality unionElimination productEquality cumulativity applyEquality functionExtensionality introduction extract_by_obid isectElimination sqequalRule lambdaEquality functionEquality universeEquality equalitySymmetry hyp_replacement Error :applyLambdaEquality,  inlFormation dependent_pairEquality inrFormation independent_functionElimination voidElimination because_Cache equalityUniverse levelHypothesis equalityTransitivity independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    ((\mforall{}a,b:A.    Dec(a  =  b))  {}\mRightarrow{}  (\mforall{}a:A.  \mforall{}u,v:B[a].    Dec(u  =  v))  {}\mRightarrow{}  (\mforall{}x,y:a:A  \mtimes{}  B[a].    Dec(x  =  y)))



Date html generated: 2016_10_21-AM-09_43_38
Last ObjectModification: 2016_07_12-AM-05_04_12

Theory : equality!deciders


Home Index