Nuprl Lemma : decidable__equal_product
∀[A:Type]. ∀[B:A ⟶ Type].
  ((∀a,b:A.  Dec(a = b ∈ A)) 
⇒ (∀a:A. ∀u,v:B[a].  Dec(u = v ∈ B[a])) 
⇒ (∀x,y:a:A × B[a].  Dec(x = y ∈ (a:A × B[a]))))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
uimplies: b supposing a
Lemmas referenced : 
all_wf, 
decidable_wf, 
equal_wf, 
subtype_rel_self, 
subtype_rel_wf, 
not_wf, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
productElimination, 
thin, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
productEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
inlFormation, 
dependent_pairEquality, 
inrFormation, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
equalityUniverse, 
levelHypothesis, 
equalityTransitivity, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    ((\mforall{}a,b:A.    Dec(a  =  b))  {}\mRightarrow{}  (\mforall{}a:A.  \mforall{}u,v:B[a].    Dec(u  =  v))  {}\mRightarrow{}  (\mforall{}x,y:a:A  \mtimes{}  B[a].    Dec(x  =  y)))
Date html generated:
2016_10_21-AM-09_43_38
Last ObjectModification:
2016_07_12-AM-05_04_12
Theory : equality!deciders
Home
Index