Nuprl Lemma : no_repeats-subtype

[T,S:Type].  ∀[L:S List]. no_repeats(S;L) supposing no_repeats(T;L) supposing S ⊆T


Proof




Definitions occuring in Statement :  no_repeats: no_repeats(T;l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a no_repeats: no_repeats(T;l) not: ¬A implies:  Q subtype_rel: A ⊆B prop: false: False nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q
Lemmas referenced :  equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf not_wf nat_wf less_than_wf length_wf no_repeats_witness no_repeats_wf subtype_rel_list list_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation independent_functionElimination equalityTransitivity equalitySymmetry applyEquality sqequalRule hyp_replacement applyLambdaEquality extract_by_obid cumulativity because_Cache voidElimination setElimination rename dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll universeEquality

Latex:
\mforall{}[T,S:Type].    \mforall{}[L:S  List].  no\_repeats(S;L)  supposing  no\_repeats(T;L)  supposing  S  \msubseteq{}r  T



Date html generated: 2017_04_17-AM-07_29_01
Last ObjectModification: 2017_02_27-PM-04_06_37

Theory : list_1


Home Index