Nuprl Lemma : divisors-sum_wf

[n:ℕ+]. ∀[f:ℕ+1 ⟶ ℤ].  (Σ i|n. f[i]  ∈ ℤ)


Proof




Definitions occuring in Statement :  divisors-sum: Σ i|n. f[i]  int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T divisors-sum: Σ i|n. f[i]  subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat_plus: + int_seg: {i..j-} nequal: a ≠ b ∈  guard: {T} lelt: i ≤ j < k and: P ∧ Q not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) so_apply: x[s] decidable: Dec(P) or: P ∨ Q subtract: m bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  sum_wf nat_plus_subtype_nat eq_int_wf int_seg_properties nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base bool_wf eqtt_to_assert assert_of_eq_int int_seg_wf add-member-int_seg2 decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma add-subtract-cancel decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality remainderEquality setElimination rename because_Cache addEquality natural_numberEquality productElimination lambdaFormation independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseApply closedConclusion baseClosed unionElimination equalityElimination functionExtensionality dependent_set_memberEquality equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination axiomEquality functionEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}n  +  1  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}  i|n.  f[i]    \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-07_31_24
Last ObjectModification: 2017_07_26-PM-05_06_38

Theory : general


Home Index