Step
*
1
of Lemma
W-sup_wf
1. A : Type
2. B : A ⟶ Type
3. a : A
4. f : B[a] ⟶ W-type(A; a.B[a])
5. p : ℕ ⟶ a:A ⟶ (B[a]?)@i
6. W-sup(a;f) ∈ co-W(A;a.B[a])
7. ↑isl(p 0 a)
⊢ W-bars(W-sup(a;f);p)
BY
{ (Assert W-bars(f outl(p 0 a);λn.(p (n + 1))) BY
((GenConclTerm ⌜f outl(p 0 a)⌝⋅ THENA Auto)
THEN Try ((D (-2) THEN Unhide THEN Auto))
THEN MoveToConcl (-1)
THEN GenConclTerm ⌜p 0⌝⋅
THEN Auto
THEN DVar `v'
THEN All Reduce
THEN RW assert_pushdownC (-1)
THEN Auto))⋅ }
1
1. A : Type
2. B : A ⟶ Type
3. a : A
4. f : B[a] ⟶ W-type(A; a.B[a])
5. p : ℕ ⟶ a:A ⟶ (B[a]?)@i
6. W-sup(a;f) ∈ co-W(A;a.B[a])
7. ↑isl(p 0 a)
8. W-bars(f outl(p 0 a);λn.(p (n + 1)))
⊢ W-bars(W-sup(a;f);p)
Latex:
Latex:
1. A : Type
2. B : A {}\mrightarrow{} Type
3. a : A
4. f : B[a] {}\mrightarrow{} W-type(A; a.B[a])
5. p : \mBbbN{} {}\mrightarrow{} a:A {}\mrightarrow{} (B[a]?)@i
6. W-sup(a;f) \mmember{} co-W(A;a.B[a])
7. \muparrow{}isl(p 0 a)
\mvdash{} W-bars(W-sup(a;f);p)
By
Latex:
(Assert W-bars(f outl(p 0 a);\mlambda{}n.(p (n + 1))) BY
((GenConclTerm \mkleeneopen{}f outl(p 0 a)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Try ((D (-2) THEN Unhide THEN Auto))
THEN MoveToConcl (-1)
THEN GenConclTerm \mkleeneopen{}p 0\mkleeneclose{}\mcdot{}
THEN Auto
THEN DVar `v'
THEN All Reduce
THEN RW assert\_pushdownC (-1)
THEN Auto))\mcdot{}
Home
Index