Nuprl Lemma : W-sup_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[a:A]. ∀[f:B[a] ⟶ W-type(A; a.B[a])].  (W-sup(a;f) ∈ W-type(A; a.B[a]))


Proof




Definitions occuring in Statement :  W-sup: W-sup(a;f) W-type: W-type(A; a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T W-type: W-type(A; a.B[a]) W-sup: W-sup(a;f) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: decidable: Dec(P) or: P ∨ Q ext-eq: A ≡ B outl: outl(x) uimplies: supposing a isl: isl(x) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_stable: SqStable(P) squash: T guard: {T} W-bars: W-bars(w;p) W-select: W-select(w;s) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  isr: isr(x) assert: b bfalse: ff sq_type: SQType(T) bnot: ¬bb nat_plus: + nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True int_seg: {i..j-} lelt: i ≤ j < k compose: g upto: upto(n) from-upto: [n, m) lt_int: i <j
Lemmas referenced :  W-type_wf co-W_wf co-W-ext decidable__assert isl_wf unit_wf2 nat_wf false_wf le_wf all_wf W-bars_wf assert_elim bfalse_wf and_wf equal_wf btrue_neq_bfalse sq_stable__W-bars nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf null-map null-upto eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upto_decomp2 decidable__lt not-lt-2 not-equal-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf map_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma assert_wf isr_wf W-select_wf map_wf int_seg_wf subtype_rel_function int_seg_subtype_nat subtype_rel_self upto_wf int_seg_properties true_wf map-map add-subtract-cancel null_cons_lemma not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalRule dependent_pairEquality hypothesisEquality functionExtensionality applyEquality hypothesis lambdaEquality sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination functionEquality because_Cache lambdaFormation dependent_functionElimination cumulativity natural_numberEquality independent_pairFormation unionElimination unionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality productElimination independent_isectElimination applyLambdaEquality independent_functionElimination voidElimination addEquality approximateComputation dependent_pairFormation int_eqEquality intEquality voidEquality imageMemberEquality baseClosed imageElimination equalityElimination promote_hyp instantiate minusEquality callbyvalueReduce sqleReflexivity

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].  \mforall{}[f:B[a]  {}\mrightarrow{}  W-type(A;  a.B[a])].    (W-sup(a;f)  \mmember{}  W-type(A;  a.B[a]))



Date html generated: 2019_10_16-AM-11_37_51
Last ObjectModification: 2018_08_22-AM-10_05_31

Theory : bar!induction


Home Index