Nuprl Lemma : W-sup_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[a:A]. ∀[f:B[a] ⟶ W-type(A; a.B[a])].  (W-sup(a;f) ∈ W-type(A; a.B[a]))
Proof
Definitions occuring in Statement : 
W-sup: W-sup(a;f), 
W-type: W-type(A; a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
W-type: W-type(A; a.B[a]), 
W-sup: W-sup(a;f), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
ext-eq: A ≡ B, 
outl: outl(x), 
uimplies: b supposing a, 
isl: isl(x), 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
sq_stable: SqStable(P), 
squash: ↓T, 
guard: {T}, 
W-bars: W-bars(w;p), 
W-select: W-select(w;s), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
isr: isr(x), 
assert: ↑b, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
nat_plus: ℕ+, 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
true: True, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
compose: f o g, 
upto: upto(n), 
from-upto: [n, m), 
lt_int: i <z j
Lemmas referenced : 
W-type_wf, 
co-W_wf, 
co-W-ext, 
decidable__assert, 
isl_wf, 
unit_wf2, 
nat_wf, 
false_wf, 
le_wf, 
all_wf, 
W-bars_wf, 
assert_elim, 
bfalse_wf, 
and_wf, 
equal_wf, 
btrue_neq_bfalse, 
sq_stable__W-bars, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
null-map, 
null-upto, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upto_decomp2, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
map_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
assert_wf, 
isr_wf, 
W-select_wf, 
map_wf, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
subtype_rel_self, 
upto_wf, 
int_seg_properties, 
true_wf, 
map-map, 
add-subtract-cancel, 
null_cons_lemma, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
dependent_pairEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
functionEquality, 
because_Cache, 
lambdaFormation, 
dependent_functionElimination, 
cumulativity, 
natural_numberEquality, 
independent_pairFormation, 
unionElimination, 
unionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality, 
productElimination, 
independent_isectElimination, 
applyLambdaEquality, 
independent_functionElimination, 
voidElimination, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityElimination, 
promote_hyp, 
instantiate, 
minusEquality, 
callbyvalueReduce, 
sqleReflexivity
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].  \mforall{}[f:B[a]  {}\mrightarrow{}  W-type(A;  a.B[a])].    (W-sup(a;f)  \mmember{}  W-type(A;  a.B[a]))
Date html generated:
2019_10_16-AM-11_37_51
Last ObjectModification:
2018_08_22-AM-10_05_31
Theory : bar!induction
Home
Index