Nuprl Lemma : upto_decomp2

[n:ℕ+]. (upto(n) [0 map(λi.(i 1);upto(n 1))])


Proof




Definitions occuring in Statement :  upto: upto(n) map: map(f;as) cons: [a b] nat_plus: + uall: [x:A]. B[x] lambda: λx.A[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j btrue: tt cons: [a b] bfalse: ff nil: [] it: append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_nil_lemma list_ind_cons_lemma nat_plus_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties false_wf nat_plus_subtype_nat upto_decomp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll sqequalAxiom

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (upto(n)  \msim{}  [0  /  map(\mlambda{}i.(i  +  1);upto(n  -  1))])



Date html generated: 2016_05_14-PM-02_04_00
Last ObjectModification: 2016_01_15-AM-08_05_40

Theory : list_1


Home Index