Nuprl Lemma : upto_decomp2
∀[n:ℕ+]. (upto(n) ~ [0 / map(λi.(i + 1);upto(n - 1))])
Proof
Definitions occuring in Statement : 
upto: upto(n), 
map: map(f;as), 
cons: [a / b], 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
upto: upto(n), 
from-upto: [n, m), 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
btrue: tt, 
cons: [a / b], 
bfalse: ff, 
nil: [], 
it: ⋅, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
nat_plus_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
false_wf, 
nat_plus_subtype_nat, 
upto_decomp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
setElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
sqequalAxiom
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (upto(n)  \msim{}  [0  /  map(\mlambda{}i.(i  +  1);upto(n  -  1))])
Date html generated:
2016_05_14-PM-02_04_00
Last ObjectModification:
2016_01_15-AM-08_05_40
Theory : list_1
Home
Index