Nuprl Lemma : W-select_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[s:(a:A ⟶ (B[a]?)) List]. ∀[w:co-W(A;a.B[a])].  (W-select(w;s) ∈ co-W(A;a.B[a])?)


Proof




Definitions occuring in Statement :  W-select: W-select(w;s) co-W: co-W(A;a.B[a]) list: List uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B or: P ∨ Q W-select: W-select(w;s) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff ext-eq: A ≡ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf co-W_wf equal-wf-T-base nat_wf colength_wf_list unit_wf2 int_subtype_base list-cases null_nil_lemma reduce_tl_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma co-W-ext subtype_rel_weakening list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry applyEquality functionEquality unionEquality because_Cache unionElimination inlEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination productEquality inrEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[s:(a:A  {}\mrightarrow{}  (B[a]?))  List].  \mforall{}[w:co-W(A;a.B[a])].
    (W-select(w;s)  \mmember{}  co-W(A;a.B[a])?)



Date html generated: 2019_10_16-AM-11_37_47
Last ObjectModification: 2018_08_22-AM-10_05_30

Theory : bar!induction


Home Index