Nuprl Lemma : co-W-ext

[A:Type]. ∀[B:A ⟶ Type].  co-W(A;a.B[a]) ≡ a:A × (B[a] ⟶ co-W(A;a.B[a]))


Proof




Definitions occuring in Statement :  co-W: co-W(A;a.B[a]) ext-eq: A ≡ B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-W: co-W(A;a.B[a]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: ext-eq: A ≡ B
Lemmas referenced :  corec-ext continuous-monotone-depproduct continuous-monotone-constant subtype_rel_dep_function subtype_rel_wf false_wf le_wf equal_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality cumulativity hypothesisEquality functionEquality applyEquality functionExtensionality universeEquality independent_isectElimination hypothesis lambdaFormation because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination isectEquality productElimination independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    co-W(A;a.B[a])  \mequiv{}  a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  co-W(A;a.B[a]))



Date html generated: 2018_05_21-PM-10_18_24
Last ObjectModification: 2017_07_26-PM-06_36_38

Theory : bar!induction


Home Index