Nuprl Lemma : co-W-ext
∀[A:Type]. ∀[B:A ⟶ Type].  co-W(A;a.B[a]) ≡ a:A × (B[a] ⟶ co-W(A;a.B[a]))
Proof
Definitions occuring in Statement : 
co-W: co-W(A;a.B[a])
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-W: co-W(A;a.B[a])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
ext-eq: A ≡ B
Lemmas referenced : 
corec-ext, 
continuous-monotone-depproduct, 
continuous-monotone-constant, 
subtype_rel_dep_function, 
subtype_rel_wf, 
false_wf, 
le_wf, 
equal_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
productEquality, 
cumulativity, 
hypothesisEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
independent_isectElimination, 
hypothesis, 
lambdaFormation, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
isectEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    co-W(A;a.B[a])  \mequiv{}  a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  co-W(A;a.B[a]))
Date html generated:
2018_05_21-PM-10_18_24
Last ObjectModification:
2017_07_26-PM-06_36_38
Theory : bar!induction
Home
Index