Nuprl Lemma : continuous-monotone-depproduct
∀[F:Type ⟶ Type]. ∀[G:T:Type ⟶ F[T] ⟶ Type].
  (ContinuousMonotone(T.x:F[T] × G[T;x])) supposing 
     ((∀X:ℕ ⟶ Type. ∀x:⋂n:ℕ. F[X n].  ((⋂n:ℕ. G[X n;x]) ⊆r G[⋂n:ℕ. (X n);x])) and 
     (∀A,B:Type.  ((A ⊆r B) 
⇒ (∀x:F[A]. (G[A;x] ⊆r G[B;x])))) and 
     ContinuousMonotone(T.F[T]))
Proof
Definitions occuring in Statement : 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
type-continuous: Continuous(T.F[T])
, 
subtype_rel: A ⊆r B
, 
type-monotone: Monotone(T.F[T])
, 
and: P ∧ Q
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
Lemmas referenced : 
continuous-monotone_wf, 
subtype_rel_wf, 
nat_wf, 
all_wf, 
subtype_rel_product, 
pi2_wf, 
pi1_wf, 
equal_wf, 
le_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
functionExtensionality, 
isectEquality, 
lambdaEquality, 
applyEquality, 
functionEquality, 
extract_by_obid, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
hypothesis, 
axiomEquality, 
hypothesisEquality, 
isectElimination, 
isect_memberEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
productEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_pairEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[G:T:Type  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  Type].
    (ContinuousMonotone(T.x:F[T]  \mtimes{}  G[T;x]))  supposing 
          ((\mforall{}X:\mBbbN{}  {}\mrightarrow{}  Type.  \mforall{}x:\mcap{}n:\mBbbN{}.  F[X  n].    ((\mcap{}n:\mBbbN{}.  G[X  n;x])  \msubseteq{}r  G[\mcap{}n:\mBbbN{}.  (X  n);x]))  and 
          (\mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (\mforall{}x:F[A].  (G[A;x]  \msubseteq{}r  G[B;x]))))  and 
          ContinuousMonotone(T.F[T]))
Date html generated:
2019_06_20-PM-00_27_42
Last ObjectModification:
2018_09_16-PM-01_30_20
Theory : subtype_1
Home
Index