Nuprl Lemma : continuous-monotone-depproduct

[F:Type ⟶ Type]. ∀[G:T:Type ⟶ F[T] ⟶ Type].
  (ContinuousMonotone(T.x:F[T] × G[T;x])) supposing 
     ((∀X:ℕ ⟶ Type. ∀x:⋂n:ℕF[X n].  ((⋂n:ℕG[X n;x]) ⊆G[⋂n:ℕ(X n);x])) and 
     (∀A,B:Type.  ((A ⊆B)  (∀x:F[A]. (G[A;x] ⊆G[B;x])))) and 
     ContinuousMonotone(T.F[T]))


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] prop: type-continuous: Continuous(T.F[T]) subtype_rel: A ⊆B type-monotone: Monotone(T.F[T]) and: P ∧ Q continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] pi2: snd(t) pi1: fst(t) not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat:
Lemmas referenced :  continuous-monotone_wf subtype_rel_wf nat_wf all_wf subtype_rel_product pi2_wf pi1_wf equal_wf le_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep independent_isectElimination cumulativity universeEquality functionExtensionality isectEquality lambdaEquality applyEquality functionEquality extract_by_obid instantiate equalitySymmetry equalityTransitivity because_Cache hypothesis axiomEquality hypothesisEquality isectElimination isect_memberEquality independent_pairEquality thin productElimination sqequalHypSubstitution independent_pairFormation cut introduction isect_memberFormation independent_functionElimination dependent_functionElimination lambdaFormation productEquality natural_numberEquality dependent_set_memberEquality dependent_pairEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[G:T:Type  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  Type].
    (ContinuousMonotone(T.x:F[T]  \mtimes{}  G[T;x]))  supposing 
          ((\mforall{}X:\mBbbN{}  {}\mrightarrow{}  Type.  \mforall{}x:\mcap{}n:\mBbbN{}.  F[X  n].    ((\mcap{}n:\mBbbN{}.  G[X  n;x])  \msubseteq{}r  G[\mcap{}n:\mBbbN{}.  (X  n);x]))  and 
          (\mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (\mforall{}x:F[A].  (G[A;x]  \msubseteq{}r  G[B;x]))))  and 
          ContinuousMonotone(T.F[T]))



Date html generated: 2019_06_20-PM-00_27_42
Last ObjectModification: 2018_09_16-PM-01_30_20

Theory : subtype_1


Home Index