Nuprl Lemma : sq_stable__W-bars

[A:Type]. ∀[B:A ⟶ Type]. ∀[w:co-W(A;a.B[a])].  ∀p:ℕ ⟶ a:A ⟶ (B[a]?). SqStable(W-bars(w;p))


Proof




Definitions occuring in Statement :  W-bars: W-bars(w;p) co-W: co-W(A;a.B[a]) nat: sq_stable: SqStable(P) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] unit: Unit function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  W-bars: W-bars(w;p) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: sq_stable: SqStable(P) squash: T exists: x:A. B[x]
Lemmas referenced :  squash_wf upto_wf subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_wf W-select_wf unit_wf2 co-W_wf isr_wf assert_wf nat_wf exists_wf sq_stable__squash
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality cumulativity hypothesisEquality applyEquality because_Cache natural_numberEquality setElimination rename functionEquality unionEquality independent_isectElimination independent_pairFormation dependent_functionElimination imageElimination imageMemberEquality baseClosed isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:co-W(A;a.B[a])].    \mforall{}p:\mBbbN{}  {}\mrightarrow{}  a:A  {}\mrightarrow{}  (B[a]?).  SqStable(W-bars(w;p))



Date html generated: 2016_05_15-PM-10_06_45
Last ObjectModification: 2016_01_16-PM-04_05_38

Theory : bar!induction


Home Index