Nuprl Lemma : W-type_wf
∀[A:Type]. ∀[B:A ⟶ Type].  (W-type(A; a.B[a]) ∈ Type)
Proof
Definitions occuring in Statement : 
W-type: W-type(A; a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
W-type: W-type(A; a.B[a])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
co-W_wf, 
all_wf, 
nat_wf, 
unit_wf2, 
W-bars_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
unionEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (W-type(A;  a.B[a])  \mmember{}  Type)
Date html generated:
2016_05_15-PM-10_06_50
Last ObjectModification:
2015_12_27-PM-05_50_23
Theory : bar!induction
Home
Index