Nuprl Lemma : W-type_wf

[A:Type]. ∀[B:A ⟶ Type].  (W-type(A; a.B[a]) ∈ Type)


Proof




Definitions occuring in Statement :  W-type: W-type(A; a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T W-type: W-type(A; a.B[a]) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  co-W_wf all_wf nat_wf unit_wf2 W-bars_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis functionEquality unionEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (W-type(A;  a.B[a])  \mmember{}  Type)



Date html generated: 2016_05_15-PM-10_06_50
Last ObjectModification: 2015_12_27-PM-05_50_23

Theory : bar!induction


Home Index