Nuprl Lemma : W-bars_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w:co-W(A;a.B[a])].  ∀p:ℕ ⟶ a:A ⟶ (B[a]?). (W-bars(w;p) ∈ ℙ)
Proof
Definitions occuring in Statement : 
W-bars: W-bars(w;p)
, 
co-W: co-W(A;a.B[a])
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
W-bars: W-bars(w;p)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
squash_wf, 
exists_wf, 
nat_wf, 
assert_wf, 
isr_wf, 
co-W_wf, 
unit_wf2, 
W-select_wf, 
map_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
upto_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
functionEquality, 
unionEquality, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:co-W(A;a.B[a])].    \mforall{}p:\mBbbN{}  {}\mrightarrow{}  a:A  {}\mrightarrow{}  (B[a]?).  (W-bars(w;p)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-10_06_42
Last ObjectModification:
2015_12_27-PM-05_50_29
Theory : bar!induction
Home
Index