Nuprl Lemma : W-bars_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[w:co-W(A;a.B[a])].  ∀p:ℕ ⟶ a:A ⟶ (B[a]?). (W-bars(w;p) ∈ ℙ)


Proof




Definitions occuring in Statement :  W-bars: W-bars(w;p) co-W: co-W(A;a.B[a]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] W-bars: W-bars(w;p) so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  squash_wf exists_wf nat_wf assert_wf isr_wf co-W_wf unit_wf2 W-select_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self upto_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality cumulativity hypothesisEquality applyEquality because_Cache natural_numberEquality setElimination rename functionEquality unionEquality independent_isectElimination independent_pairFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:co-W(A;a.B[a])].    \mforall{}p:\mBbbN{}  {}\mrightarrow{}  a:A  {}\mrightarrow{}  (B[a]?).  (W-bars(w;p)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-10_06_42
Last ObjectModification: 2015_12_27-PM-05_50_29

Theory : bar!induction


Home Index