Nuprl Lemma : W_select_nil_lemma
∀w:Top. (W-select(w;[]) ~ inl w)
Proof
Definitions occuring in Statement : 
W-select: W-select(w;s)
, 
nil: []
, 
top: Top
, 
all: ∀x:A. B[x]
, 
inl: inl x
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
W-select: W-select(w;s)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
top_wf, 
null_nil_lemma, 
reduce_tl_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}w:Top.  (W-select(w;[])  \msim{}  inl  w)
Date html generated:
2016_05_15-PM-10_06_37
Last ObjectModification:
2015_12_27-PM-05_50_21
Theory : bar!induction
Home
Index