Step
*
of Lemma
simple-fan-theorem
∀[X:(𝔹 List) ⟶ ℙ]. ∀bar:tbar(𝔹;X). ∀d:Decidable(X). (∃k:{ℕ| (∀f:ℕ ⟶ 𝔹. ∃n:ℕk. (X map(f;upto(n))))})
BY
{ (Auto THEN InstLemma `simple_fan_theorem` [⌜λ2n f.X map(f;upto(n))⌝]⋅ THEN Auto) }
Latex:
Latex:
\mforall{}[X:(\mBbbB{} List) {}\mrightarrow{} \mBbbP{}]
\mforall{}bar:tbar(\mBbbB{};X). \mforall{}d:Decidable(X). (\mexists{}k:\{\mBbbN{}| (\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}k. (X map(f;upto(n))))\})
By
Latex:
(Auto THEN InstLemma `simple\_fan\_theorem` [\mkleeneopen{}\mlambda{}\msubtwo{}n f.X map(f;upto(n))\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index