Nuprl Lemma : simple-fan-theorem
∀[X:(𝔹 List) ⟶ ℙ]. ∀bar:tbar(𝔹;X). ∀d:Decidable(X).  (∃k:{ℕ| (∀f:ℕ ⟶ 𝔹. ∃n:ℕk. (X map(f;upto(n))))})
Proof
Definitions occuring in Statement : 
tbar: tbar(T;X)
, 
dec-predicate: Decidable(X)
, 
upto: upto(n)
, 
map: map(f;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
member: t ∈ T
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
tbar: tbar(T;X)
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
dec-predicate: Decidable(X)
Lemmas referenced : 
tbar_wf, 
list_wf, 
dec-predicate_wf, 
nat_wf, 
upto_wf, 
bool_wf, 
int_seg_wf, 
map_wf, 
simple_fan_theorem
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
functionEquality, 
independent_isectElimination, 
introduction, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}[X:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}bar:tbar(\mBbbB{};X).  \mforall{}d:Decidable(X).    (\mexists{}k:\{\mBbbN{}|  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  (X  map(f;upto(n))))\})
Date html generated:
2016_05_15-PM-10_05_15
Last ObjectModification:
2016_01_16-PM-04_05_30
Theory : bar!induction
Home
Index