Nuprl Lemma : simple-fan-theorem

[X:(𝔹 List) ⟶ ℙ]. ∀bar:tbar(𝔹;X). ∀d:Decidable(X).  (∃k:{ℕ(∀f:ℕ ⟶ 𝔹. ∃n:ℕk. (X map(f;upto(n))))})


Proof




Definitions occuring in Statement :  tbar: tbar(T;X) dec-predicate: Decidable(X) upto: upto(n) map: map(f;as) list: List int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] prop: all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] so_lambda: λ2y.t[x; y] member: t ∈ T nat: so_apply: x[s1;s2] uimplies: supposing a tbar: tbar(T;X) squash: T implies:  Q prop: guard: {T} dec-predicate: Decidable(X)
Lemmas referenced :  tbar_wf list_wf dec-predicate_wf nat_wf upto_wf bool_wf int_seg_wf map_wf simple_fan_theorem
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality natural_numberEquality setElimination rename hypothesis functionEquality independent_isectElimination introduction dependent_functionElimination imageMemberEquality baseClosed imageElimination independent_functionElimination cumulativity universeEquality

Latex:
\mforall{}[X:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}bar:tbar(\mBbbB{};X).  \mforall{}d:Decidable(X).    (\mexists{}k:\{\mBbbN{}|  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  (X  map(f;upto(n))))\})



Date html generated: 2016_05_15-PM-10_05_15
Last ObjectModification: 2016_01_16-PM-04_05_30

Theory : bar!induction


Home Index