Step * of Lemma w-nil_wf

[A:Type]. (w-nil() ∈ wfd-tree(A))
BY
(ProveWfLemma
   THEN (InstLemma `co-w-ext` [A]⋅ THENA Auto)
   THEN (Assert inl ⋅ ∈ co-w(A) BY
               (SubsumeC ⌜Unit (A ⟶ co-w(A))⌝⋅ THEN Auto))
   THEN MemTypeCD
   THEN Auto) }

1
1. Type
2. co-w(A) ≡ Unit (A ⟶ co-w(A))
3. inl ⋅ ∈ co-w(A)
4. : ℕ ⟶ A@i
⊢ w-bars(inl ⋅;p)


Latex:


Latex:
\mforall{}[A:Type].  (w-nil()  \mmember{}  wfd-tree(A))


By


Latex:
(ProveWfLemma
  THEN  (InstLemma  `co-w-ext`  [A]\mcdot{}  THENA  Auto)
  THEN  (Assert  inl  \mcdot{}  \mmember{}  co-w(A)  BY
                          (SubsumeC  \mkleeneopen{}Unit  +  (A  {}\mrightarrow{}  co-w(A))\mkleeneclose{}\mcdot{}  THEN  Auto))
  THEN  MemTypeCD
  THEN  Auto)




Home Index