Nuprl Lemma : w-nil_wf
∀[A:Type]. (w-nil() ∈ wfd-tree(A))
Proof
Definitions occuring in Statement : 
w-nil: w-nil(), 
wfd-tree2: wfd-tree(A), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
w-nil: w-nil(), 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
wfd-tree2: wfd-tree(A), 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
w-bars: w-bars(w;p), 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
co-w-null: co-w-null(w), 
isl: isl(x), 
co-w-select: w@s, 
bor: p ∨bq, 
null: null(as), 
map: map(f;as), 
list_ind: list_ind, 
upto: upto(n), 
from-upto: [n, m), 
lt_int: i <z j, 
bfalse: ff, 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
squash: ↓T
Lemmas referenced : 
upto_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
map_wf, 
co-w-select_wf, 
co-w-null_wf, 
assert_wf, 
le_wf, 
false_wf, 
w-bars_wf, 
all_wf, 
nat_wf, 
subtype_rel_weakening, 
unit_wf2, 
ext-eq_inversion, 
co-w_wf, 
it_wf, 
co-w-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
inlEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
unionEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
lambdaEquality, 
axiomEquality, 
universeEquality, 
dependent_pairFormation, 
natural_numberEquality, 
independent_pairFormation, 
cumulativity, 
because_Cache, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A:Type].  (w-nil()  \mmember{}  wfd-tree(A))
Date html generated:
2016_05_15-PM-10_05_55
Last ObjectModification:
2016_01_16-PM-04_05_36
Theory : bar!induction
Home
Index