Nuprl Lemma : w-nil_wf

[A:Type]. (w-nil() ∈ wfd-tree(A))


Proof




Definitions occuring in Statement :  w-nil: w-nil() wfd-tree2: wfd-tree(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T w-nil: w-nil() subtype_rel: A ⊆B guard: {T} uimplies: supposing a wfd-tree2: wfd-tree(A) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: w-bars: w-bars(w;p) exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q assert: b ifthenelse: if then else fi  co-w-null: co-w-null(w) isl: isl(x) co-w-select: w@s bor: p ∨bq null: null(as) map: map(f;as) list_ind: list_ind upto: upto(n) from-upto: [n, m) lt_int: i <j bfalse: ff nil: [] it: btrue: tt true: True squash: T
Lemmas referenced :  upto_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_wf co-w-select_wf co-w-null_wf assert_wf le_wf false_wf w-bars_wf all_wf nat_wf subtype_rel_weakening unit_wf2 ext-eq_inversion co-w_wf it_wf co-w-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality inlEquality hypothesis functionEquality applyEquality unionEquality independent_isectElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry lambdaFormation lambdaEquality axiomEquality universeEquality dependent_pairFormation natural_numberEquality independent_pairFormation cumulativity because_Cache setElimination rename imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  (w-nil()  \mmember{}  wfd-tree(A))



Date html generated: 2016_05_15-PM-10_05_55
Last ObjectModification: 2016_01_16-PM-04_05_36

Theory : bar!induction


Home Index