Nuprl Lemma : w-bars_wf
∀[A:Type]. ∀[w:co-w(A)]. ∀[p:ℕ ⟶ A].  (w-bars(w;p) ∈ ℙ)
Proof
Definitions occuring in Statement : 
w-bars: w-bars(w;p), 
co-w: co-w(A), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
w-bars: w-bars(w;p), 
so_lambda: λ2x.t[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x]
Lemmas referenced : 
squash_wf, 
exists_wf, 
nat_wf, 
assert_wf, 
co-w-null_wf, 
co-w-select_wf, 
map_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
upto_wf, 
co-w_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[w:co-w(A)].  \mforall{}[p:\mBbbN{}  {}\mrightarrow{}  A].    (w-bars(w;p)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-10_05_48
Last ObjectModification:
2015_12_27-PM-05_50_35
Theory : bar!induction
Home
Index