Nuprl Lemma : w-bars_wf

[A:Type]. ∀[w:co-w(A)]. ∀[p:ℕ ⟶ A].  (w-bars(w;p) ∈ ℙ)


Proof




Definitions occuring in Statement :  w-bars: w-bars(w;p) co-w: co-w(A) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T w-bars: w-bars(w;p) so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x]
Lemmas referenced :  squash_wf exists_wf nat_wf assert_wf co-w-null_wf co-w-select_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf upto_wf co-w_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality cumulativity hypothesisEquality because_Cache natural_numberEquality setElimination rename applyEquality independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[w:co-w(A)].  \mforall{}[p:\mBbbN{}  {}\mrightarrow{}  A].    (w-bars(w;p)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-10_05_48
Last ObjectModification: 2015_12_27-PM-05_50_35

Theory : bar!induction


Home Index