Nuprl Lemma : co-w-select_wf

[A:Type]. ∀[s:A List]. ∀[w:co-w(A)].  (w@s ∈ co-w(A))


Proof




Definitions occuring in Statement :  co-w-select: w@s co-w: co-w(A) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q co-w-select: w@s btrue: tt bor: p ∨bq ifthenelse: if then else fi  cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff isl: isl(x) outr: outr(x)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf co-w_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases null_nil_lemma reduce_tl_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma co-w-ext subtype_rel_weakening unit_wf2 ext-eq_inversion list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination unionEquality functionEquality functionExtensionality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[s:A  List].  \mforall{}[w:co-w(A)].    (w@s  \mmember{}  co-w(A))



Date html generated: 2018_05_21-PM-10_17_55
Last ObjectModification: 2017_07_26-PM-06_36_29

Theory : bar!induction


Home Index